

Technical Bulletin 15: K-Spec[®] High-Performance Fiber Core Yarn

Slingmax[®] began manufacturing roundslings with high-performance core yarns in 1986. Prior to that, roundslings were manufactured using polyester core yarn as the load bearing fibers. One of the first high-performance fibers to enter the market was Kevlar[®], manufactured by DuPont[®]. This core yarn had many beneficial properties but, as with all new products, also had some drawbacks. Kevlar is an aramid fiber with a very high tensile strength, but as with all aramid fibers it is susceptible to yarn-on-yarn abrasion. The Kevlar fiber used in our original Twin-Path[®] slings had a coating applied to help reduce this friction and extend the life span of the core fibers. Today however, there are numerous manufacturers of high-performance fibers and Slingmax is constantly evaluating their performance in roundslings.

Our current K-Spec core yarn is a blend of high-performance fibers. Blending the fibers allows us to combine the advantages of multiple fiber types, while offsetting any disadvantages of using a single fiber type in a sling. Slingmax has continually utilized technological advances in its K-Spec core yarn production to ensure that it is always the strongest and longest lasting sling fiber available in the marketplace. K-Spec fiber has ten times the strength of steel, but at 90% less weight. It also has less than 1% elongation at working load limit (WLL) with negligible creep characteristics.

Fiber Type	Pros	Cons
Aramid (Kevlar/Twaron)	 5x strength of steel Resistant to high temperatures	 Susceptible to quickly wearing out in dynamic applications due to internal abrasion
Technora	 15% stronger than Kevlar Resistant to high temperatures Significant improvement in internal abrasion Very low creep 	 Although better, still susceptible to internal abrasion
Vectran	 Same strength as Technora Resistant to high temperatures Improvement over Technora in abrasion resistance Zero creep 	 Although better than all aramids, still susceptible to internal abrasion
HMPE (Dyneema/Spectra)	 10x strength of steel Highest resistance to internal abrasion 	 Low temperature resistance Susceptible to creep
K-Spec®	 Strength and abrasion resistance of HMPE Improved temperature and creep resistance 	 Cons of individual fibers are compensated for by blending materials with different properties

